Senin, 30 Juli 2012

Other classic SUV ..My daihatsu taft GTS '92


Saya membeli kendaraan ini 3tahun yang lalu ,dalam keadaan luarbiasa tidak terawat dan  menyedihkan. Setelah banyak perbaikan  berikut hasil nya :

               

                         

Injection nozle  re-setting sekalian inspection pompa bahan bakar lumayan habis 2jutaan , untuk mesin Diesel  kondisi nozle memegang peranan sangat penting , setelah re-seting ini .....engine nya jadi Wuuuuuushhh ........wuuuush ... ringan sekali ..lebih responsif. belakangan juga baru terasa ada perubahan konsumsi solar .. lebih irit. masih dapet di rata-rata  1 : 14.5. irit kaann ??



Daihatsu taft GT specification


Daihatsu taft GT specification



Daihatsu taft GT specification


Mengenali code untuk model daihatsu taft GT(  descrition of vihicle model code of Daihatsu taft GT) 


Ukuran /dementional body daihatsu taft GT




Perbaikan Kaki kaki , ganti bearing di ball hub atas dan bawah

Sekalian ganti kanvas rem, batery, Central rem , head lamp, dll

interior masih butuh beberapa penyesuaian




Test drive ke garut selatan Ranca buaya -Santolo-Pangalengan-Bandung

Kamis, 19 Juli 2012

My First Jeep (CJ7 Laredo '83)

C7 Laredo 1983









General specs:

Engine    :   258 cu in (4.2 L- 4200 cc) AMC I6
Transmission 5   -speed manual   4X4
Wheelbase 93.3 in                       (2,370 mm)
Length 148 in                               (3,759 mm)
Width 68.5 in                               (1,740 mm)
Height 67.7 in                               (1,720 mm)
Curb weight   2,707 lb                  (1,228 kg )




Jeep CJ7:  Gone but Not Forgotten

While the Jeep CJ7 ceased new production in 1986 to make way for its successor, the Wrangler, its presence is still seen and felt throughout the all-terrain class. Today, this 4x4 vehicle is still often used as an ideal option for outdoor enthusiasts looking to dominate off road landscapes. From mud racing to hill and rock climbing and everything in between, the Jeep CJ7 still delivers. While many of these all terrain models have been refurbished, there are still glimpses of Jeep CJ7's in the circuit touting its original stock body, marking a true testament to the superior craftsmanship of this manufacturer.





25 Years Later,  the Jeep CJ7 Is A True American Automobile Classic
After over 25 years of non-production, the Jeep CJ7 has more than earned its unofficial classic status. However, with so many operable models still in use, this model is still very clearly making its mark in the automobile arena. Collectors, driven by sport or yesteryear nostalgia, are constantly purchasing these automobiles to restore back to their original luster. From complete system overhauls to minor tweaks and esthetic modifications, there are still ample parts in circulation to ensure that anyone who wants to own a piece of American automobile history can do so with the Jeep CJ7. (http://www.jeep.com.au/)






Kunjungan ke Fuji Electric ,Kawasaki Factory Japan.

Dalam rangka pembelian rotor turbin baru  ( 110 MW  geothermal  steam turbine) yang di selesaikan Pihak Fuji electric  ahir tahun 2011 lalu ,  Saya  mewakili  Starenergy geothermal WW  Ltd. melakukan  inspeksi ahir sebelum pengiriman  dari Fuji Electric ,Kawasaki factory Japan. Ini adalah kali ke dua mengunjungi FE dan kali ke empat mengunjungi negara matahari terbit. Namun masih saja saya kagum untuk segala keteraturan,kebersihan dan semangat warga jepang.

Pemesanan rotor baru ini telah dilakukan sejak tahun  2009,berdasarkan temuan  pada major overhaul 2009. Dari hasil investigasi didapat rekomendasi untuk perbaikan di beberapa area sealing yang akan membutuhkan perbaikan yang cukup lama ( lebih dari 3 bulan) ini sudah termasuk high speed balancing yang mana hanya beberapa negara (termasuk jepang)saja yang memiliki fasilitas ini.


                                                                                                   Menunggu KA menuju Tokyo
                                                                                        
Dengan beberapa kendala tersebut (termasuk 3 bulan kehilangan generation) Manajemen starenergy memutuskan untuk membeli rotor baru dari manufacturer dalam hal ini Fuji Electric.


Berfoto bersama rekan dari FE ,Fukushima(Kevin)san,dan senior mechanic FE
di workshop Fuji ,kawasaki.


Bersama rekan SE di Pangalengan sesaat sebelum pemasangan rotor baru


Fuji electric telah bergerak dalam bisnis pembangkit  listrik termal  termasuk didalam nya : perencanaan desain, konstruksi pengadaan,, komisioning dan layanan purna jual . Unit turbin uap pembangkit pertama dimulai sejak  1959.


Rotor termal dibuat tahun 1964,yang dijadikan monumen di samping kantor FE
 setelah masa service nya

 Fuji Electric telahmemproduksi  lebih dari 34.000 MW/545 unit turbin uap dan generator di seluruh dunia, termasuk unit Jepang  sendiri .  Untuk Turbin dengan tekanan superkritis pertama  dimulai pada tahun 1973.
 Fuji Electric adalah perusahaan terkemuka dalam industri pembangkit listrik tenaga panas bumi dan telah memasok fasilitas  listrik tenaga panas bumi ke seluruh dunia. Energi panas bumi adalah energi terbarukan dan pemanfaatannya akan tumbuh untuk mengurangi emisi CO2.

 Kawasaki Bay,dermaga keluar masuk Material dari FE




Rabu, 18 Juli 2012

HAZARD IDENTIFICATION RISK ASSESSMENT

Hazard Identification, Risk Assessment (HIRA) mechanism
HIRARC deliverables for activities with significant risk ranking with specific number and/or when legal requirement is applied could become inputs for defining Occupational Health & Safety (OH&S) Objective and Target.
Formally this method provides:
·            Identifying all Hazards/Aspect and Potential Impact/Consequences;
·            Determining the Risk Ranking of each Hazard/Aspect or Potential Impact/Consequences.
·            Determine legal and other requirements references.
·            Defining suitable and sufficient Determine Control measures,
·            Predicting the residual Risk Ranking of the controlled Hazard,

Scope of the HIRARC Mechanism is applied to routine and non-routine activities; the method applies to OH&S risk assessments and is NOT applied to the identification of SIGNIFICANT ENVIRONMENTAL ASPECTS.

                                             Hira Process (Flowchart)

























The Risk Assessment considers:
·            Severity of the process has 4 categories: (List detail of severity refers to severity Matrix)
(A) Major (>$200,000);             (B) Serious ($25,000 - $200,000);
(C) Moderate ($500 - $25,000);            (D) Minor (<$500).
·            Likelihood of the process has 4 categories:
(I)                Almost Certain  : many times per year
(II)             Probable                        : one time per year
(III)          Possible             : one time per 5 years
(IV)          Unlikely             : one time per 10 years or more
·            While Risk Ranking is a function of both severity and likelihood (refer to WW Risk Ranking Matrix). Risk Ranking has 4 categories:
1.      Unacceptable (significant aspect): Shall be mitigated with engineering and/or administrative controls o a criticality level of 3 or lower as soon as possible.
2.      Undesirable (significant aspect): Shall be mitigated with engineering and/or administrative controls o a criticality level of 3 or lower as soon as possible.
3.      Acceptable with control (significant aspect): Should be verified that procedures or controls cited are in place
4.      Acceptable as it is (not significant aspect): No mitigation action required
Note: Significant risk = initial risk ranking equivalent to 1, 2 or 3 and/or when legal requirements applied.


 Severity Matrix


First largest geothermal steam turbine , Wayang windu Pangalengan kabupaten Bandung

CONSTRUCTION OF THE LARGEST GEOTHERMAL POWER PLANT FOR WAYANG WINDU PROJECT, INDONESIA
Hiroshi Murakami, Yoshifumi Kato, Nobuo Akutsu
Fuji Electric Co., Ltd. 1-1 Tanabeshinden, Kawasaki-ku, Kawasaki-city 210-0856 Japan
Key Words : EPC contract, IPP project, Largest capacity turbine, SAGS

ABSTRACT
Sumitomo Corporation, Japan obtained the Engineering,Procurement and Construction (EPC) contract with MagmaNusantara Limited (MNL), Indonesia for Wayang Windu Geothermal Power Plant including power station andSteamfield Above Ground System (SAGS) in June 1997. MNL,as an Independent Power Producer (IPP) will operate the plantand sell electricity to Persahaan Listrik Negara (PLN) for 30
years. The plant will include 2 units of 110MW power generation facilities and another 2 units of 110MW as an option in the future. Fuji Electric, Japan, as the subcontractor ofSumitomo Corporation, supplied steam turbines, generators,condensers and ancillary equipment as well as constructing and
commissioning the plant.The geothermal steam turbine manufactured at Fuji Electric, Kawasaki, Japan is the largest capacity (rated 110MW, max.115MW) in the world as a single flash and single casing with 27.4-inch- long last stage blades (LSB).
The first set of 110MW power generation facilities includingthe power station and SAGS was ready for synchronization in August 1999 and second unit is awaiting notice to proceedfrom MNL.

1. INTRODUCTION
Wayang Windu geothermal power plant is in Pangalengan located approximately 40 km south of Bandung, West Java in Indonesia, as presented in Fig.1, and named after Mt. Wayang and Mt. Windu near the plant. Fig.2 presents the plant overview. The site is surrounded by a tea plantation and its altitude is approximately 1700 m above sea level. Since the plant is an IPP project, low capital cost and reliable operation with high efficiency are essential from an economical point of view. The plant has several distinctive characteristics including large-capacity turbine, two-phase flow pipelines with central separators, and integrated pressure control designated to meet such requirements.
   
Fig.1

Fig 2

2. DISTINCTIVE CHARACTERISTICS OF THE PLANT
2.1 Large Capacity Turbine
It is well known that larger capacity means higher efficiency for a geothermal steam turbine as well as a conventional one. The largest capacity of 110MW geothermal turbine of single casing is used here.
2.2 Two Phase Flow Pipelines
A mixture of steam and water from production wells is led to acentral separator station as two phase flow. Piping material and construction costs decrease because of the smaller bore piping.
2.3 Integrated Pressure Control System
Stable separator pressure is essential to maintain steam quality. The integrated pressure control system uses the turbine governor valves to achieve this by varying at the same time as controlling flow at the production wells. Consequently, release of geothermal steam to atmosphere can be minimized.

3. POWER STATION
Fig.3 presents schematic diagram of power station.
3.1 Steam Turbine
The turbine is a single-cylinder, double-flow condensing type.Major specifications are the following;
Output 110 MW (MCR 115MW)
Inlet steam pressure : 10.2 bara
Inlet steam temperature : 181°C
Exhaust steam pressure : 0.12 bara
Number of stage :2 (flows)X 8
Length of LSB : 697 mm (27.4 inches)
Bearing span : 5800mm
Speed :50 c/s
The turbine casing is of single-shell construction and is composed of two blocks in the axial direction; i.e., the front and rear parts. Upper half of the casing is shipped as one block, bolted at the vertical joint flange of the front and rear parts assembled with the upper half of stationary holder and/or stationary blade rings, so as to decrease the work at job site. Lower half is also designed as one block in the factory. The casing is directly supported by foundation at both sides of the exhaust. The bearing pedestals are independent from the casing and directly fixed on the foundation. This construction secures the vibration stability of the turbine rotor with large inertia moment. As the turbine uses reaction blades, the turbine rotor has a drum or flat configuration. Stress concentration and deposition of corrosive components are eliminated by the flat configuration, so that the possibility of stress corrosion cracking (SCC) is avoided. Because the rotor has the longest LSB for geothermal use, its maximum diameter is quite large and stresses on the blade groove are large. To reduce the maximum stresses on the blade groove, the newly designed low stress groove is adopted. The turbine blades of Fuji's geothermal steam turbines are all reaction type blades. The reaction type blades are highly efficient as well as highly reliable. First to fifth stage blades are the integral shroud blades machined from one block of material.
They are assembled in the rotor and/or the stationary blade holders so that the shroud and root have compression stress on each contact surface to the adjoining blades of both sides. When assembled in such a manner, no gaps between the adjoining blades will be produced under any operational conditions and the high vibration damping effect due to dry friction will be produced. The sixth stage moving blades have the integral shroud of zigzag contour which assures a good damping effect as above using twist back of the blades. The profiles of the first to fifth stage stationary blades are the same as those of the moving blades but the size in dimension changes. These stationary blades are assembled in one stationary blade holder, which is bolted to the stay flange of casing. The stationary blade holder has the horizontal joint flange. Fig.4 presents a cross section of the turbine. Since the steam velocity through the reaction stage is as low as half of that through impulse stage, solid particle erosion is avoided. The blades of the geothermal turbines are designed so that the design stresses are kept at a lower level as compared with those of the conventional turbines. This design feature eliminates the possibility of SCC and corrosion fatigue.




Furthermore this makes the throat, the minimum channel width of the blade row, large. A large throat area is particularly advantageous for the geothermal turbine, since scaling easily
occurs on the turbine blades. Having a large throat area means that, even if scaling occurs, the output reduction will be kept at a smaller level. As one of the other countermeasures against scaling, the blade wash system is provided, which washes the turbine blades during normal operation by injecting condensate water. The last three stages are provided with LP blades. They are the advanced LP blades designed using the fully three-dimensional (3-D) flow calculation method. The last (L-0) stationary blades
are leaned in the radial direction to reduce the losses near the root. And the airfoils near the tip of LSB figure so called convergent-divergent channel that minimizes the shock wave losses. Employing the advanced LP blades means that the turbine efficiency will be improved by 1.5%. L-0 and L-1 moving blades are free standing without shroud or lacing wires. Since any additions like boss for the lacing wire
are not provided on the airfoils, they are designed to be aerodynamically optimum. The vibration characteristics of the free-standing blades are so simple that resonance frequencies are easily avoided with a proper margin in the design stage to allow continuous operation at ±5% of nominal speed (47.65
52.5 1/s). Stellite shields are brazed to L-0 and L-1 moving blades on the tip to protect from erosion by water droplets. To reduce the erosion by water droplets, proper drainages are provided as well at the inlet chamber, fifth stage outlet, and inter-stage of LP-blade row, by which the water droplets will be discharged to the condenser. The turbine adopts dual entries of steam to perform a full stroke stem free test of the main stop and governor valves. Two main stop valves of swing check type are provided. The bore size of main stop valve is 800 mm. Two governor valves of butterfly type are provided downstream of each main stop valve, that is, total 4(four) governor valves with 600 mm bore size are provided for this turbine in order to maintain the proper governing speed.
3.2 Generator
Delivery of the largest capacity air cooled turbo generator for geothermal power plant Air cooled turbo generator for this plant is the largest capacity unit among the air cooled Turbo generator units for geothermal power plants developed by Fuji Electric, Kawasaki.

Major specifications are the following:
Type : Three-phase horizontal cylindrical
Revolving field total-enclosed type
Synchronous generator.
Ventilation: Self-ventilation
Cooling: Totally enclosed water-to-air-cooled (TEWAC)
Rating
Output: 137500KVA
Voltage: 13800V
Power factor: 0.8lag
Frequency: 50Hz
Number of phases : 3
Speed : 3000rpm
Insulation class : F
Excitation: Brushless excitation
Major corrosion protection
Stator coil and insulation : Global vacuum pressure
impregnation insulation
Stator core : Special coating
Rotor coil and insulation : Special coating
Purification of circulating air : Purified by special filter
Make-up air : Purified by special filter

Introduction of Fuji’s latest compact/light weight air cooled turbo generator Fuji has been in the development work of new series for 2 years to make this 2-pole air cooled turbo generator more compact in size and lighter in weight by 30%. To verify the development work, a 120MVA Prototype Generator was built.
In designing this Prototype Generator, a considerable number of improvements were made to achieve compact and light weight unit, and more than 1000 items have been measured for various conditions to confirm its performance and safety as well as finding items for further improvement.
Data logger and optical slip ring method were developed for measuring temperature at each part of rotor coil during rated operation.
Major analysis techniques :
3-D electromagnetic field analysis
3-D flow analysis and temperature analysis
Vibration analysis
Strength analysis
Major measurement and verification items:
Generator power
Stator and rotor temperature
Generator flux
Generator vibration
3.3 Condenser
The condenser is of direct contact, low level type. Cooling water from the cooling tower is directly injected into the exhaust steam through the jet nozzles by differential pressure between cooling tower and condenser, and the normal water level in the condenser is maintained by the control valves located downstream of the hot well pumps. The condenser is composed of the steam inlet connections, upper shell, lower shell and hotwell. The steam inlet connections are constructed with the stainless expansion joints to prevent deformation of the turbine casing and the condenser.
The lower shell is composed of a condensing zone and three gas cooling zones. The shell and hotwell plates are made of type 316L stainless clad steel and other internal parts including nozzles are made of
type 316 or 316L stainless steel. The condenser is pre-assembled to 10 blocks at the factory.
Major specifications of the condenser are the following;
Condensing pressure : 0.12 bara
Steam flow(incl. NCG;2 wt%) : 733,300 kg/h
Cooling water flow : 16,700m3/h
Cooling water temperature : 23.5°C
Weight (empty) : 200 ton
3.4 Auxiliary Equipment
Specifications of major equipment are presented as below.
Cooling tower
Type : Wet type, Counter flow
Number of cell : 8
Gas removal system
Type : Hybrid system (combination of
steam ejector and vacuum pump)
Capacity : 2X50% + 50% ejector stand by


Generator Transformer
Rating : 134 MVA (ONAF)
92 MVA (ONAN)
Voltage : 150 kV / 13.8 kV
Overhead crane
Type : Overhead traveling crane
Rating : 60 ton (main hoist)
5 ton (aux. Hoist)
Span : 25 m

4. STEAMFIELD ABOVE GROUND SYSTEM (SAGS)
Steam field Above Ground System, so called SAGS, is the generic name of facilities other than the power station in geothermal power plant, such as steam pipeline, brine/condensate pipeline, separator, scrubber, rock muffler, etc. Fig.5 presents schematic diagram of SAGS.



4.1 Production and Injection Wells
Production and injection wells were developed by MNL prior to commencement of the work for the power station and SAGS. There are three production well pads and three brine/condensate injection well pads for unit No.1. Each production well pad has three or four wells ranging from 1800m to 2500m.
The altitude of a production well pad is approx. 1850m above sea water level (aswl) being higher than that of power station by 150m while injection well pads is approx. 1500m aswl being lower by 200m. Fig.6 presents a production well pad.


                                                                         Fig 6

4.2 Pipeline
Geothermal steam & fluid from production wells is piped downhill from the separators as two phase flow. Pipelines from each well pad to separator are made of carbon steel being 36 inches nominal bore. The distance between them is approx. 4km. Steam pipeline from the separator to the power station is made of carbon steel being 40 inches nominal bore. The distance between them is approx. 1km and vertically displaced by 70m. Brine pipeline from the separator to each injection well pad is made of carbon steel being 30 inches nominal bore. The distance between them is approx. 8km and gravity reinjection is used. Condensate pipeline from the cooling water piping to the
Injection well pad is made of carbon steel being 28 inches nominal bore. The distance between them is approx. 9km. Necessary pipe loops are provided on those pipelines to absorb thermal expansion.
4.3 Separator, Scrubber and Rock Muffler
Three cyclone-type separators are used to separate steam from two-phase liquid coming from production wells. Steam goes to power station while brine to injection wells. Two scrubbers of corrugate type are provided just before the power station to eliminate further moisture. Surplus steam is released to the atmosphere through vent valves. Two rock mufflers are provided near the separator station to reduce the noise level of the released steam.

5 PROJECT SCHEDULE
Fig.7 presents a project schedule including engineering/design, manufacturing, transportation, construction and commissioning. The contract was effective in June 1997 and the plant was ready for synchronization in August 1999. Engineering/Design and Manufacturing Critical equipment such as turbine, generator and condenser were shipped from Fuji Electric Kawasaki Factory 12 months after notice to proceed was given by MNL. Major auxiliary equipment such as hotwell pumps, cooling tower, gas removal system, main transformer and Distributed Control System (DCS) were shipped from Japan, USA, Australia, Singapore, etc. 12 to 16 months after the contract signing. SAGS piping
Materials designed by Kingston Morrison Limited (KML) were shipped progressively from Japan, USA, Korea, etc., 8 to 16 months after the contract signing. Construction and Commissioning Civil and construction works were sublet to local subcontractors. Proposals for the works were thoroughly evaluated in the points of technical, commercial and financial views. The site work for power station started in June 1997. SAGS site works started in December 1997. Local engineering company, subsidiary of an engineering company in New Zealand, has been employed for managing and supervising such subcontractors.


6. TOPICS
6.1 Environmental Protection
The plant is surrounded by tea plantation and villages. During construction and commissioning periods, control of storm water discharge, soil disposal, dust, and water quality have been taken to ensure environmental impacts have been minimal. Periodic monitoring reports in accordance with AMDAL (Indonesian environmental regulation) were submitted to the government office every 3 months.
6.2 Weather
The period from May to October is usually the dry season. Civil works such as excavation, concrete pouring and backfilling were planned during the dry season. There was no dry season in 1998 due to the so called “La Nina phenomenon” which is a reaction of “El Nino phenomenon” in 1997. The progress of civil and structural works was significantly affected. Unexpected environmental protection works were carried out accordingly.

6.3 Economic Crisis in Indonesia
In Indonesia as well as other Southeast Asian countries, an economic crisis occurred in 1998. Local subcontractors had difficulty in raising funds resulting in the delay of progress of the works. Local subcontractors faced difficulty in purchasing materials from foreign countries because foreign companies did not accept Letters of Credit issued by Indonesian banks. As countermeasures, we improved terms of payment for the subcontractors so as to assist a solution of their finance problem and we purchased necessary materials from foreign companies instead and supplied them to the subcontractors.

7. CONCLUSION
The largest capacity of geothermal turbine was manufactured at Fuji Electric, Kawasaki, Japan a company with extensive experiences in both geothermal and conventional power generation businesses. Wayang Windu Geothermal Power Plant unit No.1 has been successfully completed in cooperation with MNL and local subcontractors. We hope that electricity generated at this plant contributes to development and improvement of life for local people in this area.

ACKNOWLEGNENT
We would like to thank Messrs. John Wheble, John Scott of
MNL, and Takahiro Moriyama, Akio Kajimoto of Sumitomo
Corporation for giving us advice and cooperation during
contract execution stage.

REFERENCES
(Journal Article)
(1) Esaki, Y., Murakami, H. (1999). Topics of Geothermal
Power Generation Abroad, Geothermal Energy, Vol.24,
No.3
(2)Kato,Y.,et al. (1996), Progress of geothermal steam turbine
technology, Fuji Electric Review, Vol.42,No.2


* Recently Unit 1 wayang windu turbine over 12 years service and still runing well ;)

Selasa, 17 Juli 2012

Trip to Selayar island




.

Pulau Selayar memiliki laut bawah laut yang indah dengan semua makhluk yang unik dan penuh warna laut. Di Pulau Selayar kita dapat menemukan sesuatu yang berbeda dan menakjubkan tidak hanya dalam aktivitas menyelam tetapi juga dalam kegiatan lain yang menarik yang dapat kita kerjakan. Ada banyak olahraga dan kegiatan yang menyenangkan dapat dilakukan. kita juga dapat menikmati kegiatan lain di Pulau Selayar selain kegiatan diving juga  snorkeling ,ski air, dan Hiking sekitar Pulau Selayar.


Kabupaten Kepulauan Selayar (dahulu Kabupaten Selayar, perubahan nama berdasarkan PP. No. 59 Tahun 2008)[2] adalah sebuah kabupaten yang terletak di Provinsi Sulawesi Selatan, Indonesia. Ibu kota kabupaten Kepulauan Selayar adalah Kota Benteng. Kabupaten ini memiliki luas sebesar 10.503,69 km² (wilayah daratan dan lautan) dan berpenduduk sebanyak 121.749 jiwa.[3] Kabupaten Kepulauan Selayar terdiri dari 2 sub area wilayah pemerintahan yaitu wilayah daratan yang meliputi kecamatan Benteng, Bontoharu, Bontomanai, Buki, Bontomatene, dan Bontosikuyu serta wilayah kepulauan yang meliputi kecamatan Pasimasunggu, Pasimasunggu Timur, Takabonerate, Pasimarannu, dan Pasilambena

                                                                  Lokangloe island , selayar







hobi menyatukan perbedaan profesi: Dokter,
pengacara, mahasiswa, jaksa,wartawan, fotomodel,enginer(he he... saya mau kebawa juga)dan
ahli K3



Rabu, 11 Juli 2012

Hari lingkungan hidup sedunia (world environment day)



              Kegiatan di Starenergy geothermal Wayang windu ,memperingati world environment day


Ekonomi hijau adalah tujuan dari pembangunan yang mengutamakan peningkatan standar hidup manusia, keadilan sosial, sembari menekan perusakan lingkungan serta kelangkaan sumber daya alam.

Dengan kata lain, bila tersebut kalimat "ekonomi hijau" maka itu adalah tentang upaya tindakan-tindakan ekonomi yang menghasilkan karbon lebih rendah, efisien sumber daya, dan pada saat yang bersamaan inklusif secara sosial.





"Blue economy" adalah tema hari lingkunngan hidup sedunia tahun ini.

Selasa, 10 Juli 2012

Sejarah pembangkit tenaga Listrik Geothermal di indonesia






Usulan JB Van Dijk pada tahun 1918 untuk memanfatkan sumber energi panasbumi didaerah kamojang, Jawa Barat, merupakan titik awal dari perkembangan panasbumi di Indonesia. Secara kebetulan, peristiwa itu bersamaan waktu dengan awal pengusahaan panasbumi di dunia, yaitu di Larnderello, Italia, yang juga terjadi di tahun 1918. Bedanya, kalau di Indonesia masih sebatas usulan, di Italia pengusahaan telah menghasilkan uap alam yang dapat dimanfaatkan untuk membangkitkan tenaga listrik.





1926 – 1928
Lapangan panasbumi Kamojang, dengan sumurnya bernama KMJ-3, yang pernah menghasilkan uap pada tahun 1926, merupakan tonggak pemboran eksplorasi panasbumi pertama oleh Pemerintah kolonial Belanda. Sampai sekarang, KMJ-3 masih menghasilkan uap alam kering dengan suhu 140C dan tekanan 2,5 atmosfer (atm).Sampai tahun 1928 telah dilakukan lima pemboran eksplorasi panasbumi, tetapi yang berhasil mengeluarkan uap — ya itu tadi — hanya sumur KMJ-3 dengan kedalaman 66 meter. Sampai saat ini KMJ-3 masih menghasilkan uap alam kering dengan suhu 1400 C dan tekanan 2,5 atmosfer.
Sejak 1928 kegiatan pengusahaan panasbumi di Indonesia praktis terhenti dan baru dilanjutkan kembali pada tahun 1964. Dari 1964 sampai 1981 penyelidikan sumber daya panasbumi dilakukan secara aktif bersama-sama oleh Direktorat Vulkanologi (Bandung), Lembaga Masalah Ketenagaan (LMK PLN dan ITB) dengan memanfaatkan bantuan luar negeri.



1970-an
Tahun 1972 telah dilakukan pemboran pada enam buah sumur panasbumi di pegunungan Dieng, dengan kedalaman mencapai 613 meter. Sayangnya, dari keenam sumur tersebut tidak satu pun yang berhasil ditemukan uap panasbumi.Penyelidikan yang lebih komprehensif di Kamojang dilakukan pada 1972 menyangkut geokimia, geofisika, dan pemetaan geologi. Di tahun itu Cisolok, Jawa Barat, dan kawah Ijen, Jawa Timur, juga dilakukan penyelidikan.Lalu di tahun 1974, Pertamina aktif di dalam kegiatan di Kamojang, bersama PLN, untuk pengembangan pembangkitan tenaga listrik sebesar 30 MW. Selesai tahun 1977. Saat itu Selandia Baru memberikan bantuan dana sebesar 24 juta dolar New Zealand dari keperluan 34 juta dolar NZ. Sekurangnya dibiayai Pemerintah Indonesia.Selain itu, Pertamina juga membangun dua buah monoblok dengan kapasitas total 2 MW di lapangan Kamojang dan Dieng. Diresmikan 27 November 1978 untuk monoblok Kamojang dan tanggal 14 Mei 1981 untuk monoblok Dieng.PLTP Kamojang sendiri diresmikan 1 Februari 1983 dengan kapasitas 30 MW. Perkembangan cukup penting di Kamojang terjadi pada tahun 1974, ketika Pertamina bersama PLN mengembangkan lapangan panasbumi tersebut. Sebuah sumur panasbumi dieksplorasi dengan kedalaman 600 meter yang menghasilkan uap panasbumi dengan semburan tegak oleh suhu pipa pada garis alir 1290.Di luar Pulau Jawa, sumber daya panasbumi dikembangkan di Lahendong, Sulawesi Utara, dan di Lempung Kerinci. Kunjungan tim survei di Lahendong di tahun 1971 melibatkan Direktorat Geologi Bandung, PLN, dan pakar panasbumi dari Selandia Baru. Survei tersebut pada 1977/1978 oleh tim survei dari Kanada, yaitu Canadian International Development Agency (CIDA).




1980-an
Pada 1980-an usaha pengembangan panasbumi ditandai oleh keluarnya Keppres No. 22 Tahun 1981 untuk menggantikan Keppres No. 16 Tahun 1974. Menurut ketentuan dalam Keppres No. 22/1981 tersebut, Pertamina ditunjuk untuk melakukan survei eksplorasi dan eksploitasi panasbumi di seluruh Indonesia. Atas dasar itu sejak 1982 kegiatan di Lahendong diteruskan oleh Pertamina dengan mengadakan survei geologi, geokimia, dan geofisika. Pada 1982 itu juga Pertamina menandatangani kontrak pengusahaan panasbumi dengan Unocal Geothermal of Indonesia (UGI) untuk sumur panasbumi di Gunung Cisalak, Jawa Barat. Baru pada tahun 1994 beroperasi PLTP Unit I dan II Gunung Salak.Dan pada Februari 1983 sumur panasbumi di Kamojang berhasil dikembangkan secara baik, dengan beroperasinya Pembangkit Listrik Tenaga Panasbumi (PLTP) Unit-I (1×30 MW). Dan baru pada Februari 1987 Pertamina berhasil mengoperasikan PLTP Unit II.Sementara pengusahaan panasbumi di Gunung Drajat, Jawa Barat, dilakukan oleh Pertamina dengan Amoseas of Indonesia Inc. dan PLN (JOC-ESC). Tahun 1994 beropasi PLTP Unit I di Gunung Drajat.



1990-an
Pada tahun 1991 Pemerintah sekali lagi mengeluarkan kebijakan pengusahaan panasbumi melalui Keppres No. 45/1991 sebagai penyempurnaan atas Keppres No. 22/1981. Dalam Keppres No. 45/1991 Pertamina mendapat keleluasaan, bersama kontraktor, untuk melakukan eksplorasi dan eksploitasi panasbumi. Pertamina juga lebih diberi keleluasaan untuk menjual produksi uap atau listrik kepada PLN atau kepada badan hukum pemegang izin untuk kelistrikan.Di samping itu, pada tahun 1991 keluar juga Keppres No. 49/1991 untuk menggantikan Keppres No. 23/1981 yang mengatur tentang pajak pengusahaan panasbumi dari 46% menjadi 34%. Tujuannya adalah untuk merangsang peningkatan pemanfaatan energi panasbumi. Pada tahun 1994 telah ditandatangani kontrak pengusahaan panasbumi antara Pertamina dengan empat perusahaan swasta. Masing-masing untuk daerah Wayang Windu, Jawa Barat (PT Mandala Nusantara), Karaha, Jawa Barat (PT Karaha Bodas Company), Dieng, Jawa Tengah (PT Himpurna California Energy), dan Patuha, Jawa Barat (PT Patuha Power Limired). Untuk selanjutnya, 1995, penandatanganan kontrak (JOC & ESC) Pertamina Bali Energy Limited dan PT PLN (Persero) untuk pengusahaan dan pemanfaatan panasbumi di daerah Batukahu, Bali.Masih di tahun 1995 penandatanganan kontrak (SSC & ESC) untuk Kamojang Unit-IV dan V antara Pertamina dengan PT Latoka Trimas Bina Energi, serta ESC antara PT Latoka Trimas Bina Energi dengan PT PLN (Persero). Dan masih di tahun 1995 dikeluarkan MOU antara Pertamina dengan PT PLN untuk membangun PLTP (1×20 MW)di Lahendong, Sulawesi Utara dan monoblok (2 MW) di Sibayak, Sumatera Utara.



PENGATURAN PEMERINTAH
Pada awalnya, pengusahaan panasbumi dipercayakan oleh Pemerintah kepada Pertamina, berdasarkan Keppres No. 6 Tahun 1974 tanggal 20 Maret 1974. Meskipun dengan wilayah kerja yang masih terbatas, yaitu di Pulau Jawa saja.Setelah itu wilayah kerja meluas, yaitu ketika Pemerintah mengeluarkan Keppres No. 22/1981 tentang kuasa pengusahaan eksplorasi dan eksploitasi sumber daya panasbumi untuk pembangkit tenaga listrik di Indonesia. Pelaksanaannya diserahkan kepada Pertamina.Pertamina diwajibkan menjual energi listrik yang dihasilkan dari pengusahaan panasbumi kepada PLN. Selain itu, kalaupun Pertamina belum atau tidak bisa melaksanakan pengusahaan tersebut, bisa bergandengan dengan pihak lain dalam bentuk Kontrak Operasi Bersama (Joint Operation Contract). Sampai saat itu, pajak pengusahaan panasbumi sebesar 46%. Hal ini diatur Keppres No. 23 Tahun 1981. Dalam perkembangan kemudian, Pemerintah mengizinkan instansi lain (selain Pertamina), baik BUMN, swasta nasional, termasuk koperasi untuk mengembangkan usaha dalam bidang ketenagalistrikan skala kecil (10 MW) dan keperluan lain yang terkait.Soal ini diatur Keppres No. 45/ 1991 yang menyempurnakan Keppres No. 22/ 1981. Pertamina selaku pemegang kuasa eksplorasi, untuk menjual hasil produksi panasbumi, baik berupa energi atau listrik tidak hanya kepada PLN. Kemudian Keppres No. 49/1991 sebagai pengganti Keppres No. 23/1981. Di sini diatur kewajiban fiskal pengusahaan panasbumi. Ditetapkan bahwa total bagian yang disetor kepada Pemerintah sebesar 34% dari net operating income. (Sumber: www.djmbp.esdm.go.id)